IT/Datacenter & Super Computing News - Page 10

The latest and most important IT/Datacenter & Super Computing news - Page 10.

Follow TweakTown on Google News

Intel announces new Xeon Phi Knights Hill at SC14

Paul Alcorn | Nov 18, 2014 10:08 AM CST

Supercomputing 2014: Intel has announced a new Xeon Phi processor, code-named Knights Hill, at Supercomputing 2014. The Xeon Phi co-processors are the offspring of the Larabee project, and Intel has improved performance and inter-operability with each successive product generation. Knights Hill is a key advancement for Intel in the HPC (High-Performance Computing) market, and will leverage a 10nm process and integrate Intel's Omni-Path Fabric technology.

Intel announces new Xeon Phi Knights Hill at SC14 01

The Knights product series competes directly with NVIDIA in the supercomputing market, and Knights Hill is a natural progression of the product line which will enhance performance scaling and bandwidth while simultaneously reducing power consumption.

Knights Landing features the Intel Silvermont Architecture that is designed specifically for HPC applications. The architecture significantly boosts single thread performance by 3X in comparison to the Knights Corner product. The on-package memory tops out at 16GB and offers amazing bandwidth, over 5x more than DDR4. This stacked memory design also significantly reduces the power consumption of the memory subsystem by as much as 5X.

Continue reading: Intel announces new Xeon Phi Knights Hill at SC14 (full post)

Huawei Debuts new liquid-cooled FusionServer products at SC14

Paul Alcorn | Nov 18, 2014 9:27 AM CST

Supercomputing 2014: Huawei announced their new FusionServer X6800 products at Supercomputing 2014. The new FusionServer X6800 supports a variety of high-density nodes in a 4U chassis, which provides flexibility for different configurations of compute, storage, and GPU acceleration within the same server. The X6800 also supports the latest SSD configurations and offers two to four GE ports or two 10Gbe ports.

Huawei Debuts new liquid-cooled FusionServer products at SC14 | TweakTown.com

Huawei also announced a new liquid-cooled version of the FusionServer E9000. This blade server features cutting-edge heat dissipation technology in a 12U enclosure. This liquid-cooled behemoth features 16 slots and redundant power supplies, along with 40GBe or InfiniBand FDR (56G). The platform is built upon a scalable architecture that allows for dual or quad CPU nodes. Huawei will also be demonstrating the RH5885H V3 server, a standard 4U rack server that supports four Intel E7-4800 v2 processors, and the RH2288 V3, a dual socket 2U server rack that supports Intel E5-2600 v3 processors.

Continue reading: Huawei Debuts new liquid-cooled FusionServer products at SC14 (full post)

Foremay launches 4TB and 8TB SATA SSDs

Paul Alcorn | Nov 18, 2014 8:46 AM CST

Foremay, Inc. has announced their new 4TB and 8TB SATA 6Gb/s SSDs. SATA SSDs are one of the hottest growth segments in the datacenter, and more capacity is always welcome. There are SAS SSDs with up to 4TB of capacity, such as the SanDisk Optimus MAX, but the introdcution of a high-capacity SATA SSD will broaden the use-case for high-capacity SSDs. Foremay focuses on the OEM market, and the new SSDs are geared for servers and ruggedized applications. The EC188 and SC199 features a random read/write speed of 100K/100K, and sequential read/write speeds of 500/500 MB/s.

Foremay launches 4TB and 8TB SATA SSDs | TweakTown.com

The SSDs feature AES-256 encryption and are TCG Opal 2.0 compliant and feature military-grade secure erase functionality. The new SSDs are designed for high heat environments to provide reliability in enterprise and industrial applications. Foremay SSDs are custom built, and can also equipped with a supercapacitor to provide power loss protection. There simply aren't any SSD controllers on the market to address that much flash, so this is likely to be a custom solution with a bridge device akin to the Intelliprop Hydra SATA bridge we evaluated recently.

Continue reading: Foremay launches 4TB and 8TB SATA SSDs (full post)

OCZ launches new Vertex 460A SSD

Paul Alcorn | Nov 17, 2014 8:16 PM CST

OCZ Storage Solutions has just announced the release of their Vertex 460A. The original Vertex series has been a stellar product with a history that spans back to the original version with the first-gen Indilinx Barefoot controller. The new version leverages Toshiba's latest A19 MLC NAND flash. The A19nm process geometry is the second generation of Toshiba 19nm MLC. The new version also features the Barefoot 3 controller and sequential speeds of 545/525 MB/s read/write (480GB model). Random speeds also top out at 95,000/90,000 random read/write IOPS, respectively, but performance varies depending upon capacity, as noted in the graphic below.

OCZ launches new Vertex 460A SSD 01

The Vertex 460A features an endurance rating of 20GB of writes for the three-year warranty period. OCZ is providing their new ShieldPlus warranty, which provides advance shipping and covers return shipping costs if there is the need for an RMA. The new Vertex also features Acronis True Image for cloning an existing installation to the SSD, and a 3.5" desktop adaptor. OCZ recently launched a new online shop, and we expect units to be available there shortly.

The new Vertex comes in 120, 240, and 480GB capacities and also offers toll-free tech support. Chris put the original Vertex 460 through the testing gauntlet, and the SSD received the TweakTown Editor's Choice Award. The switch to the newer process shouldn't yield huge variations in performance, as a matter of fact the specifications are very similar. Head over to the OCZ Vertex 460 240GB SSD Review for a closer look at the previous model, which should be indicative of performance experienced with the new model.

Continue reading: OCZ launches new Vertex 460A SSD (full post)

Supermicro sets new STAC world record for low latency

William Harmon | Nov 17, 2014 11:56 AM CST

Supermicro has announced world-record setting performance in the STAC-N1 and STAC-A2 benchmarks. Supermicro's 3rd generation Hyper-Speed platform, in tandem with the Intel Xeon Phi co-processor, delivered the record-setting results from an incredibly slim 1U server. The results indicate a propensity for superior performance in HFT (high Frequency Trading) applications, which crave low latency and high performance. Performance consistency is a big key to delivering predictable and sustainable QoS for HFT applications. The Hyper-Speed platform nailed key requirements with the lowest mean latency, max latency, and jitter. The slim 1U platforms can be deployed with up to 3 Intel Xeon Phi co-processors, expanding the use-case for even more demanding workloads.

Supermicro sets new STAC world record for low latency 01

The Hyper-Speed Ultra provides an impressive stable of connectivity with 10 2.5" drive bays, 8 12Gb/s SAS 3 ports, 2 SATA 6Gb/s ports, and a range of PCIe connections. The platform also accepts 2 NVMe drives via the AOC-URN2-i2XT. The system is powered by dual E5-2643 v3 Haswell processors. Supermicro has several high-performance systems available, and the pending release of their ULLtraDIMM-enabled platforms may increase performance beyond their own world record. 3

We recently had a chance to take a Supermicro development system for a spin in our SanDisk ULLtraDIMM DDR3 400GB SSD Enterprise Review. We also feature full evaluations of a number of Supermicro and competing platforms in the Motherboard and Server categories of our IT/Datacenter section.

Continue reading: Supermicro sets new STAC world record for low latency (full post)

LiOn deployed in Facebook datacenters for power backup

Paul Alcorn | Nov 14, 2014 11:08 AM CST

Power consumption is the highest ongoing expense in the datacenter, and for giants like Facebook it can easily add up to billions of dollars per year. One of the most obvious sources of power consumption spawns from cooling costs. Power consumption generates heat, and Facebook has grabbed the low-hanging fruit by moving to open-air datacenter designs that radically reduce cooling requirements. Now Facebook has turned their attention to UPS systems for the next layer of power savings. Reducing overall power consumption is key because it also incurs the expense of power backup. During a power loss event the systems automatically fall back to massive UPS systems that provide enough power, typically 90 seconds worth, to cover the gap until backup generators come online. Facebook has already altered UPS design by migrating from large central UPS systems to seven-foot tall server cabinets interspersed throughout the datacenter.

LiOn deployed in Facebook datacenters for power backup | TweakTown.com

Today these massive power backup systems rely upon lead-acid batteries, but now Facebook is experimenting with the same type of lithium-ion batteries found in today's latest electric vehicles. The long term cost of maintenance is lower for lithium-ion batteries, and they also deliver more power in a smaller footprint. Facebook is experimenting with designs that embed lithium-on batteries at the rack level. Two batteries will slide into each rack and provide UPS protection. This design also reduces the chance of UPS failure. If a standard centralized UPS fails the entire datacenter can go down. With rack-level battery backups, only small groups of servers would be effected by individual failures.

Recent advances in lithium-ion battery technology have been fueled by electric car development. Vehicles like the Volt, Tesla, and Leaf, have ushered in advanced battery technology and also lowered the overall cost. Now that cost of Li-on batteries has fallen they have become a sensible alternative for UPS applications in massive datacenters. Facebook is integrating their new designs into their Open Compute initiative, which might serve to expand the widespread use of Lithium-ion in the datacenter. There is no word on how increased demand would affect the overall pricing.

Continue reading: LiOn deployed in Facebook datacenters for power backup (full post)

Diablo Technologies displays SanDisk ULLtraDIMMS at Open Server Summit

Paul Alcorn | Nov 13, 2014 10:52 AM CST

Open Server Summit 2014 focuses on next-generation server designs that leverage industry-standard hardware and open-source software. The show is a great place to view future server technology, which makes it the perfect venue for displaying the Diablo MCS (Memory Channel Storage) architecture at work on the SanDisk ULLtraDIMM. The SanDisk ULLtraDIMM DDR3 SSD brings latency as low as five microseconds by sidestepping the traditional storage stack, and communicating via the DDR3 bus. This reduces cabling, complexity, and components required for typical storage deployments.

Diablo Technologies displays SanDisk ULLtraDIMMS at Open Server Summit 01

The slim form factor, which takes advantage of the existing memory subsystem, will enable radical new server designs, particularly in the blade and microserver segment. The hardware consists of a JEDEC-compliant ULLtraDIMM that presents itself as a block storage device with 200 or 400GB of capacity. The ULLtraDIMM utilizes two Marvell 88SS9187 controllers running the Guardian Technology Platform to increase endurance and reliability. This tandem delivers random read/write performance of 140,000/40,000 IOPS, and sequential read/write speeds up to 880/600 MB/s. Ten DWPD (Drive Writes Per Day) of endurance, and a five-year warranty (or TBW) are provided by SanDisk 19nm eMLC NAND.

The real genius of the ULLtraDIMM design is its enhanced parallelism. Stacking several devices in parallel unlocks key performance advantages that will challenge even the fastest datacenter-class PCIe SSDs. We recently had a chance to take an in-depth look at the ULLtraDIMM and post our independent third party testing results in the SanDisk ULLtraDIMM DDR3 400GB SSD Enterprise Review. Head over to the PCIe category in our IT/Datacenter section for a look at competing PCIe devices.

Continue reading: Diablo Technologies displays SanDisk ULLtraDIMMS at Open Server Summit (full post)

New development tool from A*STAR speeds 20TB HDD HAMR development

Paul Alcorn | Nov 13, 2014 10:05 AM CST

Lately HDDs aren't gaining in capacity as quickly due to the limitations of PMR (Perpendicular Magnetic Recording). PMR stores magnetic bits of data vertically, allowing manufacturers to cram more data onto the HDD's platters, which provides more density than the previous horizontal method. Every new technology has its limits, and PMR has nearly reached the end of its evolutionary cycle. Now manufacturers are turning to HAMR (Heat-Assisted Magnetic Recording) to increase density. HAMR uses a small laser to heat the surface of the platter to 800 degrees Fahrenheit before data is written. The laser is incredibly small and embedded into the drive's write head, and the small heated surface area cools back down in under a nanosecond.

New development tool from A*STAR speeds 20TB HDD HAMR development | TweakTown.com

Heat alters the magnetic properties of the disk for this nanosecond in time, and removes or reduces the superparamagnetic effect while data is written. This process allows for exponential gains in density, and HAMR drives with up to 20TB of storage are on the horizon. While this technology sounds a bit far-fetched, working development drives have already been displayed. With any new technology one of the immediate concerns is a lack of development tools. A team from A*STAR, led by Hongzhi Yang and the National University of Singapore, have designed a pump-probe laser to test HAMR devices. This allows accurate testing of temperature-dependent recording in localized regions without actually destroying the media. This is one more step on the path to creating affordable HAMR HDDs, and the first Seagate HAMR HDDs are projected to release in 2016 timeframe.

Continue reading: New development tool from A*STAR speeds 20TB HDD HAMR development (full post)

NVM Express launches NVMe 1.2 specification

Paul Alcorn | Nov 12, 2014 10:17 AM CST

NVM Express has announced the new NVMe 1.2 specification, and many of the features are aligned to increase adoption in mobile designs, such as laptops and ultrathins. NVMe is a new storage protocol that provides amazing performance and low latency in comparison to legacy approaches, but while we have seen some amazingly fast enterprise SSDs hit our labs, NVMe hasn't quite made it to the consumer space. New power management features will allow NVMe SSDs to kick into lower power states, which will increase battery life for mobile applications.

NVM Express launches NVMe 1.2 specification | TweakTown.com

Another new feature can also help to make SSDs more affordable. The NVMe specification now supports a host-based memory buffer. With the notable exception of SandForce devices, current SSDs use DRAM for caching. This extra DRAM component adds cost, draws more power, and takes up space on the SSD. NVMe 1.2 allows the SSD to use the computers RAM for SSD management, which means simpler, and cheaper, SSD designs. The smaller form factors will also lend themselves well to ultra-thins, 2-in-1's, and tablets. One neat aspect is that the SSD can request varying amounts of DRAM from the host system. This DRAM is typically utilized for translation tables for the FTL, but it isn't hard to imagine some uses for caching actual data in the future. Enhanced temperature management will keep the SSD from overheating, which is also a key feature in cramped laptops and ultra-thins. If the SSD reaches a high temperature it can simply throttle performance to cool down. These new features are welcome additions, and new NVMe SSDs will speed their way into your home computer or mobile device soon.

For enterprise applications, enhanced namespace management, a controller memory buffer, online firmware updates, and enhanced status reporting are on the menu. We will dive deeper into these features when new NVMe 1.2 SSDs hit our lab, but in the meantime take a look at our extensive coverage of the NVMe spec in our Defining NVMe Article. Also, visit our Intel SSD DC P3700 1.6TB PCIe NVMe Enterprise Review and Samsung XS1715 1.6TB 2.5-inch NVMe PCIe Enterprise SSD Review for an in-depth look at the extreme performance of NVMe datacenter storage solutions.

Continue reading: NVM Express launches NVMe 1.2 specification (full post)

Intel boosts DC S3500 capacity to 1.6TB and adds M.2 option

Paul Alcorn | Nov 11, 2014 11:02 AM CST

The Intel DC S3500 series competes in the price-sensitive segment and is geared for read-intensive and mixed workloads. The DC S3500 (evaluated here) doesn't sport quite the performance of its older brother, the DC S3700 (evaluated here), but provides plenty of performance and endurance for many workloads. Today Intel is announcing the release of 1.2 and 1.6TB variants, along with a new M.2 design. Expanded capacity is coupled with low power consumption that delivers reduced TCO. The DC S3500 has an active read power below 1.3 Watts. A sprinkling of other datacenter-specific technologies provide resiliency and a 0.3DWPD (Drive Writes Per Day) endurance limitation. End-to-end data protection, data redundancy technology, AES encryption, and power loss protection, ensure data safety.

Intel boosts DC S3500 capacity to 1.6TB and adds M.2 option 01

Intel 20nm MLC NAND and a new 8-channel controller drive the DC S3500 models. Details are scant on the new Intel-proprietary controllers, but we will update readers as more information becomes available. We can expect to see the same consistent performance from the new drives, with a .5ms latency maximum for 99.9% of 4k random read IOPS. There are 10 capacity points available for the 2.5 drives, allowing users to tailor capacity for their specific needs. The high-capacity 2.5" variants feature up to 500/460 MB/s of sequential read/write speed and up to 65,000/18,500 random read/write IOPS. The larger pool of flash provides a bit more performance for the high-capacity variants, but the entire DC S3500 range features varying speeds based upon capacity.

The M.2 design relies upon the SATA interface and comes in 80, 120, and 340GB capacities. The performance of the M.2 variant seems tuned for slightly more random write speed than the similar capacity 2.5" variants, but slightly lower read speed. Intel is expecting the compact M.2 design to make a big splash in embedded applications, such as digital signage and slot machines. The M.2 design will also work well for server boot volumes. The ultra-dense design is particularly well-suited for blade and microserver designs, and some OEMs are in the process of developing systems with multiple M.2 connectors.

Continue reading: Intel boosts DC S3500 capacity to 1.6TB and adds M.2 option (full post)

Newsletter Subscription
Latest News
View More News
Latest Reviews
View More Reviews
Latest Articles
View More Articles